Life of a mRNA

Pre-mRNA processing is coupled to transcription, RNA export,

translation and degradation. Pre-mRNA processing allows to increase
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Function of alternative splicing

Binding properties

ntracellular localisation

nyzmatic and signaling activity

Protein stability

Domains with posttranslational modifications
on channels

Function of alternative splicing.Stamm S, Ben-Ari S,
Rafalska |, Tang Y, Zhang Z, Toiber D, Thanaraj TA,
Soreq H.Gene. 2005 Jan 3;344:1-20. Epub 2004 Dec
10. Review.




RNA processing steps are coupled to transcription
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When testing splicing (RNA metabolism) in vivo, there are indirect effects



Capping

? -methylguanosine 5' end of mRNA
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Cap 0, cap1, cap 2 Methyl groups from 5’ to 3’



Mechanism of cap synthesis

DN/\/\/"- Remove one of three terminal phosphates

Add GTP
) ,\/\/I}I] methylate the G residue
GpppN/\n/‘
3-AdoMet /\*
m?GpppN/\\/\/"—

CE: Capping enzyme
Mtase: methylase
S-Ado Met: S-adenosyl methionine

Where does capping occur ?



Function of the cap
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CAGE tags to map translational start sites
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Depending on the source tissue analyzed, CAGE tags can be mapped to different positions in a ~100 kB upstream
region of the mouse UDP-glucuronyl transferase gene, identifving different transcriptional start sites. The frequency
of a given CAGE tag iz a direct measure for the abundance of the respective transcriptvariant in the different tissues
{from Carninci et al., 2008

CAGE, cap analysis of gene expression

How would YOU clone capped, full length RNA?
Where do you find cage tags?



Uncapping
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Trimethyl G cap: Capping in the cytosol
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What is the function of the TMG cap?



(alternative) Splicing
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Almost all protein coding polll transcripts undergo splicing,
>90% are alternatively splicing



Splice sites are degenerate and are recognized by RNA:RNA
Interaction
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Recognition of splice sites is aided by proteins binding

Exon definition model

Sequestration of regulatory sites in cis



Splicing complexes are transient

RNA:protein Interaction @
Protein:Protein Interaction .
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Combinatorial control, integration of weak protein:protein, RNA:RNA,
protein:RNA interactions

‘Phosphorylation regulates splice site selection

-Small RNAs regulate the selection of splice sites



Exon Recognition is determined by multiple elements

promoter branch point polypyrimidine tract local secondary structurs poly-adenylation site
* 3" splice site 5" splice site
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Table 4. Characterization of Dr. Venter's and Dr. Watson's exomes. Numbers for Dr. Watson's exome are taken from [20]. \
exondntron architecturs

Dr. Venter's Exome Dr. Watson's Exome variable exon |6r|gth

Total Number of Nonsynonymous SNPs 10,389 10,569

Number of Novel Nonsynonymous SNPs 772 (7% of total nsSNPs) 1,573 (15% of total nsSNPs) mEm T Wlable |ntr':|n Ength
% nsSNPs predicted to affect protein function® 14% (7,781 predicted on) 20% (3,898 predicted on)

Number of Coding Indels 739 345+

"Different prediction algorithms were used [30,33], and this may account for the difference between the two exomes.

“Indels of size 2 bp and greater were considered; 1 bp indels were discarded. If we removed 1 bp indels from Dr. Venter's exome in order to compare with Dr. Watson's
exome, Dr. Venter would have 423 coding indels.

doi:10.1371/journal.pgen.1000160.t004

Numerous mutations have effect on pre-mRNA processing



Splicing is carried out by the spliceosome
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Spliceosomal cycle
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RNAs are the backbone of the spliceosome
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RNA rearrangements during the splicing reaction
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Alternative splicing: Competition between elements
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Diseases caused by mutations affecting splicing

FTDP-17
thrombasthenia of
naegeli

Menke Disease
Leukodystrophy
Immunodeficiency
Immunodeficiency
Cerebrotendinous xanthomatosis

Marfan syndrome

Acute intermittent porphyria
Tyrosinemie

Leigh’s encephamyelopathy
Homocystinuria

SBCAD:

Bardet Biedl syndrome
Hutchinson-Gilford progeria (HGPS)
Neurofibromatosis (NF)

Duchenne muscular dystrophy

CAGguaagu

glanzmann and

dementia
Blood coagulation

Copper metabolism
lymphocytes

lymphocyte

lymphocyte

lipid-storage disease,

also called cerebral cholesterinosis
Connective tissue
Porphobilinogen deaminase
metabolite

metabolite

Metabolite

Metabolite

metabolite

Nuclear structure

cancer

muscle

Tau exon 10
platelet glycoprotein Illa

MNK

Arylsulfatase A
Adenosine deaminase
TNFRSF5

CYP27A1

Fibrillin-1

Heme biosynthesis

Fumarylacetoacetat hydrolase

Pyruvate dehydrogenase E1 alpha
Methionine synthase

short branced chain acyl-CoA dehydrogenase
MGC1203

Lamin A

NF-1

Dystrophin, exon 23

Mostly rare diseases, informative for the

splicing process

Alternative splicing and disease, Prog. Mol. Subcell. Biol., 2006, Springer
Buratti et al., Nucl. Acids Res. 34, 2006: 3494-3510
Tazi et al. (2009): Biochim Biophys Acta 1792:14



P bodies: the end of the RNA?

Processing bodies (p bodies)
Dcp bodies, GW body




Summary and outlook

RNA is the first read-out of the genetic information

RNA is more than a messenger, RNA ‘interprets’ the genetic
information

RNA is processed, which changes the readout of the genetic
information

RNA can have enzymatic activity

RNA is structural more diverse than DNA

Proteins have evolved that stabilize the structure of RNA

Understand how SNPs affect RNA processing and genetic readout
Contribution to complex diseases?
Understanding the rules that govern RNA processing



